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Statement of Significance
The Atomic Cluster Expansion (ACE) [1] provides a systematically improvable, universal descriptor for

the environment of an atom that is invariant to permutation, translation and rotation. ACE is being used
extensively in newly emerging interatomic potentials based on machine learning. This commentary discusses
the ACE framework and its potential impact.

Background
Machine-learning interatomic potentials (MLIPs) are a novel class of potential energy models that are beginning
to revolutionize atomistic-scale materials and molecular simulation. For an increasing number of systems of
scientific and technological interest they are capable of closely matching the predictions of high fidelity electronic
structure models, at a tiny fraction of the computational cost. There is legitimate optimism in the MLIPs
community that this class of models will, in the coming years, enable routine large-scale and long-time simulations
at similar accuracy as electronic structure models. I refer to [2–4] for recent overviews of the field.

This commentary focuses on the Atomic Cluster Expansion (ACE), a specific MLIP flavour introduced by
Drautz [1]. Despite some effort at objectivity, it emphasizes my personal perspective and taste.

MLIPs are conceptually not too different from the empirical interatomic potentials of the past several
decades: one chooses a parameterized functional form for the total potential energy, incorporating as much
physical knowledge as one can, then estimates the remaining parameters from available data. The step-change
introduced by MLIPs is that they employ far more flexible parameterisations∗ and are therefore in principle able
to capture a much wider range of physics at higher accuracy. This was made possible by the rapid increase in
computing resources and resulting readily available ab initio simulation data.

MLIPs are best thought of as a class of models that borrow machine learning ideas to fill the gaps left
by empirical modelling and make them systematically improvable. Such work requires a fine balance between
flexibility of the models and strong physical priors, and this is precisely where the ACE model and its relatives
show their strength. Indeed, according to Drautz†, his original motivation for developing the ACE model was
to demonstrate that it is possible to construct interatomic potential models that are systematically improvable
(universal, in the language of machine learning) while maintaining physical interpretability.

∗Ideally, MLIPs should be systematically improvable, or universal in the language of machine learning; however, many MLIPs
cannot be classified as such.

†personal communication
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ACE as an interatomic potential model
It is a decades-old procedure to expand total energy into site energies, E =

∑
iEi, and then site energies into

many-body terms,

Ei =V0(Zi) +
∑
j1

V1(rij1 , Zj1 ;Zi) +
∑
j1<j2

V2(rij1 , Zj1 , rij2 , Zj2 ;Zi) + . . .

+
∑

j1<···<jN̄

VN̄

(
rij1 , Zj1 , . . . , rijN̄ , ZjN̄ ;Zi),

(1)

where (ri, Zi) are atom position, atomic number pairs, rij = ri − rj are relative atom positions and the
summation over indices jt ranges only over atoms within some predefined cutoff radius.

Even if we could formulate many-body potential terms VN that can be evaluated at O(1) cost, the combi-
natorial scaling of

∑
j1<···<jN̄

makes this approach entirely impractical for N̄ > 3. One of the key innovations
of the ACE model [1] was to rewrite the many-body expansion as

Ei =U0(Zi) +
∑
j1

U1(rij1 , Zj1 ;Zi) +
∑
j1,j2

U2(rij1 , Zj1 , rij2 , Zj2 ;Zi) + . . .

+
∑

j1,...,jN̄

UN̄

(
rij1 , Zj1 , . . . , rijN̄ , ZjN̄ ;Zi);

(2)

that is, summation is not only over unique clusters as in (1) but over repeated N -clusters as well as “spurious”
clusters with repeated atom indices (self-interaction). After expanding the potentials UN in a tensor product
polynomial basis, transformed to allow only rotational and reflection invariant basis functions, this self-interacting
expansion leads to a remarkably simple and efficient four-stage evaluation scheme:

A
(i)
nlm =

∑
j

Rnl(rij , Zj , Zi)Y
m
l (r̂ij), A

(i)
nlm =

N∏
t=1

A
(i)
ntltmt

, B(i) = CA(i), Ei = θ ·B(i). (3)

Details and an in-depth performance assessment can be found in [1, 5, 6].
The evaluation cost scales only linearly in the number of neighbours, unlike the combinatorial scaling of

a naive cluster expansion. It is systematically improvable (universal) in the limit of taking the cutoff radius,
body-order and polynomial basis to infinity. This combination of performance, universality and interpretability
of the model as a many-body expansion rapidly captured the attention of the wider MLIPs community; see,
e.g., [7–11] for a few selected examples building directly on [1]. Seko, Togo and Tanaka [12] independently
developed a method that shares many ideas with [1].

In my personal view, the greatest strength of ACE is its flexibility. The basic variant described in (3) is a
linear model, which makes it attractive for incorporating it into a Bayesian framework, e.g., for an active learning
type workflow [8,9]. However, one can also employ the many-body expansion in several imaginative ways, e.g.,
extending the Finnis-Sinclair model which results in a site energy of the form Ei = E

(1)
i −

√
E

(2)
i , where

each E
(p)
i is a scalar expanded as in (3). After also parameterizing the radial basis Rnl(rij , Zj , Zi) (making it

trainable), we obtain a flavour of ACE made available in the PACEMAKER open source software package [13].
Drautz also extended the method in a straightforward fashion to the parameterisation of equivariant material
properties such as charge or magnetic dipoles [14] and to multi-layer models with learnable atomic environment
features that are themselves parameterized by ACE [13]. I will give further examples below.

Although only very recently released, the PACEMAKER package has already been used successfully to param-
eterize a number of state-of-the-art interatomic potentials for materials, including, but not limited to Cu [5],
C [15], Mg [16], Fe [17] (with extension to account for magnetism) and Pt-Rh nanoparticles [18].
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Connections
To conclude the discussion of ACE as an interatomic potential, I briefly put it into context of a few prior methods
with which it shares similarities. Bowman and Braams’ permutation-invariant polynomials [19] formulate an
expansion of the total potential energy in terms of isometry and permutation-invariant polynomials using com-
putational invariant theory methods. ACE [1] can be seen as an explicit and computationally more efficient way
to construct an invariant expansion. Bartok, Payne, Kondor and Csanyi [20] introduced a systematic approach
to expand of the atomic environment (SOAP) and then used a kernel method to represent site energies Ei. The
SNAP method of Thompson et al. [21] extends the SOAP idea from 3-body descriptors (power spectrum) to 4-
body descriptors (bi-spectrum). ACE [1] can be understood as an extension of the SOAP and SNAP descriptors
to arbitrary high correlation orders, resulting in a complete linear basis and thus allowing expansion of the site
energy as a linear model (3). Moment tensor potentials (MTPs) [22] construct an alternative complete linear
polynomial basis for site energies. The key difference is that MTP employs tensor contractions in Euclidean
coordinates, while ACE employs tensor contractions in a spherical harmonics representation. This seemingly
superficial but possibly crucial difference appears to drive the relatively fast adoption of ACE. Employing an
irreducible representation of the rotation group makes it easier to select an appropriate set of descriptors. This
also makes the ACE formulation attractive for the quantum modelling community used to working with spherical
harmonics representations.

ACE as a general many-body method
Aside from a method to develop MLIPs, ACE can also be understood as a general methodology to incorporate
many-body interaction into physical models in an interpretable, systematic and computationally efficient way.
With relatively straightforward adaptions it was successfully used for parameterizing tight binding hamiltoni-
ans [23, 24], wave functions via the backflow transformation [25, 26], and jet-taggers [27]. Another potentially
far-reaching application is the integration of many-body interaction into equivariant deep neural network ar-
chitectures. First, the ACE formulation was employed in [28] to provide new theoretical perspectives on the
E3NN and NequIP [29] architectures. This analysis led to two new model architectures, ALLEGRO [30] and
MACE [31], which at the time of writing this commentary represent the state-of-the-art in MLIPs accuracy.

Conclusion
The Atomic Cluster Expansion (ACE) [1] is a canonical formulation for many-body parameterisations of equiv-
ariant properties of particle systems. Due to its crystal clear interpretability, excellent performance, accuracy,
and adaptability to new problems, it has established itself as one of the main pillars of scientific machine learning
for molecular dynamics simulation, and is just beginning to also impact other fields. Its greatest success so
far is in parameterising interatomic potentials for materials simulation. The discovery of the ACE formalism
is a major advance in the evolution of interatomic potentials for large-scale atomistic materials modelling and
MLIPs based on ACE will, over time, likely supplant venerable empirical interatomic potential models such as
embedded atom and bond order potentials.
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