
KIM REVIEW
https://kimreview.org

Volume 2, Article 05, 2024
DOI:10.25950/67c762ea

From GAP to ACE to MACE

Commentary by

Noam Bernstein
Center for Materials Physics and Technology, U. S. Naval Research Laboratory, Washington, D.C.

on

1. Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the
Electrons
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Statement of Significance

The Gaussian approximation potential (GAP) machine-learning-inspired functional form was the first to
be used for a general-purpose interatomic potential. The atomic cluster expansion [1, 2] (ACE), previously
the subject of a KIM Review [3], and its multilayer neural-network extension (MACE) have joined GAP among
the methods widely used for machine-learning interatomic potentials. Here I review extensions to the original
GAP formalism, as well as ACE and MACE-based frameworks that maintain the good features and mitigate
the limitations of the original GAP approach.

Background: Gaussian Approximation Potentials with Smooth Overlap of
Atomic Positions (SOAP-GAP)
Machine learning interatomic potentials (MLIPs) have revolutionized the field of atomistic simulations by re-
placing functional forms that are motivated by the specific physics of the bonding between atoms with minimally
constrained many-body forms, as reviewed in [4–8]. Since any sufficiently flexible functional form could (by defi-
nition) reproduce an arbitrarily complicated potential energy surface (PES), one of the main practical challenges
in developing MLIPs has been the tradeoff between this flexibility and the resulting tendency for inaccuracy
away from the fitting data. If we had reference data available for all configuration (an infinite amount), that
would fully constrain any fitting function. However, since generating reference data (e.g. with density func-
tional theory calculations) is computationally expensive, reducing the amount of required data is essential. This
can be achieved by taking advantage of features of the PES, such as symmetries or smoothness, that reduce
the possible variation of the energy between fitting configurations, and hence the amount of data needed to
constrain the fit. This is particularly important for the very flexible functions required to produce accurate and
general purpose MLIPs that are applicable throughout a wide range of configurations and geometries.
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About 15 years after the earliest proposals to use a machine-learning method, neural networks, for interatomic
potentials [9], the first modern MLIPs succeeded in describing atomic geometries for specific physical systems [10,
11]. The Gaussian approximation potential (GAP) approach [11] uses sparse Gaussian process regression with a
number of different descriptors of the atomic environments. One of the first efforts to develop a general purpose
MLIP for a particular material was the silicon GAP [12] that used smooth overlap of atomic positions (SOAP)
descriptors. This potential was able to reproduce the energies of its density functional theory (DFT) reference
energies (and their force and stress gradients) for a single element in a wide range of crystal structures, defects
(point, line, and plane), and disordered states such as liquid and amorphous. The SOAP-GAP functional form
had exact rotation and permutation symmetry, as well as smoothness, due to the form of the squared exponential
SOAP descriptors, and regularization (reducing the tendency to follow every fluctuation in the fitting data)
through the “noise” hyperparameters of Gaussian process regression 1. The flexibility of the function could be
controlled through the SOAP descriptor parameters and the number of representative points in the sparse GPR.

This pioneering effort showed that an accurate general purpose MLIP could be developed, but the specific
methods that made it possible also led to a number of limitations. The computational cost was large for an
interatomic potential, of order 10-100 ms/atom on a single CPU core [13], and it scaled with the number of
chemical elements squared. The use of GPR made the actual model fitting trivial by reducing it to the compu-
tation of the pseudo-inverse of the covariance matrix (via numerical linear algebra), but there was only mixed
success in the initial attempts to use the GPR-predicted variance as a predictor of the MLIP error. Here I briefly
survey some of the improvements and successors to SOAP-GAP that attempted to maintain the advantages
and mitigate the disadvantages, while leveraging other mathematical and computational developments.

Improvements to SOAP-GAP
One change that minimally altered the overall SOAP-GAP form but led to substantial speedup was the devel-
opment of new descriptors [14] implemented in the soap turbo package [15]. The SOAP kernels represent the
similarity of two atomic environments (i.e. the kernel for GPR) starting from a spherically symmetric Gaussian
centered around each neighboring atom. In soap turbo, these Gaussians are replaced with a product of a radial
Gaussian and an angular Gaussian. This modification gives some additional flexibility, for example varying the
smoothing, i.e. the width of the Gaussians, with neighbor distance, and crucially it is considerably faster to
evaluate. With soap turbo it is possible to match the accuracy of a conventional SOAP-GAP at ∼ 10× lower
computational cost [14]. As a result, these improved descriptors have essentially replaced the original SOAP
variant in the QUIP gap fit software [16].

A larger change, to address the quadratic scaling with the number of chemical elements, was proposed
by Darby et al. through an approach called tensor-reduced density representations [17]. The SOAP-GAP
expressions were re-cast in terms of quantities defined in the atomic cluster expansion (ACE) formalism [1, 2].
This redefinition makes it clear that the expansion of the SOAP descriptors into chemical elements and radial
basis functions, whose number of tensor indices grows linearly with the number of chemical elements, can be
transformed into an embedding 2, i.e. a linear transformation into a space of arbitrary dimensionality, which can
be converged to recover the exact tensor. The great advantage of this transformation is that the size of this space
does not grow with combinatorial complexity as in earlier formulations. Darby et al. conclude that, in practice,
the cost of the computation for evaluating the GAP becomes independent of the composition. They find that
the tensor-reduced representation leads to a reduction by a factor of ∼ 10 in the number of descriptor vector
elements required for a given accuracy [17, 18]. Further exploration will be needed to determine the optimal size
of the embedded space, the best method to optimize the linear transformation, and under what circumstances
(e.g. number of elements) operating in the embedded space leads to a net reduction in computational cost.

GPR, which underlies GAP, predicts not only the value of the fit quantity, i.e. the potential energy, but
also its variance, which is a measure of its uncertainty. It was initially hoped that this variance would be a

1Note that most of this so-called noise is in fact model error due to the finite range of the potential. Actual uncertainty in the
reference values, e.g. due to incomplete convergence, is much smaller.

2Here “embedding” is used in its machine-learning meaning, which is unrelated to the emedded atom method (EAM) potentials.
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good predictor of the MLIP’s error, and this was indeed demonstrated for the Si SOAP-GAP [12], as well
as for a SOAP-GAP fit to energy barriers in heterogeneous catalysis [19]. However, in some other systems
where SOAP-GAP was applied this was not the case, and we suspect that the successful examples depended
on the availability of a large amount of fitting data relative to the diversity of configurations. Since the initial
demonstration, a number of efforts have been made to improve GAP error prediction based on GPR-predicted
variance. One approach applied to SOAP-GAP is to optimize the model’s hyperparameters 3 by maximizing the
Bayesian log-likelihood [20]. This is a computationally expensive process, but this cost is partially mitigated
by a new parallelized implementation of the GAP fitting code [21]. Another approach that proved successful
was to speed up hyperparameter optimization and avoid the need for sparsification of the representative points
by limiting the amount of reference data and restricting the model to a specific system [22], or by limiting the
model’s non-linearity (reducing its body order and potentially its accuracy) [23].

Beyond GAP
While the extensions to GAP discussed above have addressed some of its limitations, other approaches, with their
own complementary advantages and disadvantages, are also under development. The two that I describe below,
linear ACE as implemented in ACEpotentials.jl and nonlinear neural-network multilayer-ACE (MACE), were
influenced by the same ideas and motivations as the design choices of SOAP-GAP.

Linear atomic cluster expansion via ACEpotentials.jl

As the work of Drautz [1–3] showed, a very wide range of interatomic potentials can be seen as aspects of a
unified atomic cluster expansion (ACE) framework. These include SOAP-GAP, a non-linear model with 3-body
descriptors, the spectral neighbor analysis potential (SNAP)[24, 25], a linear or quadratic model with 4-body de-
scriptors, and a number of linear models with arbitrary body order more directly tied to the ACE functional form.
Several codes implementing the latter approach are available, including moment tensor potentials (MTP) [26],
performant ACE [27] and PACEMAKER [28, 29], and the implementation I discuss here. Combining the lessons
of GAP with ACE led to the development of a new ACE fitting implementation, ACEpotentials.jl [30, 31].
As in SOAP-GAP, rotation and permutation symmetry are exact (due to the ACE framework), but smoothness
and regularization are facilitated through entirely different means.

Rather than using the squared exponentials that smooth the atomic position variation in SOAP,
ACEpotentials.jl uses a linear model with polynomial basis, whose oscillatory tendencies are quantified
by the polynomial degree. A mathematical expression combining the radial and angular oscillations defines a
total polynomial degree, whose maximum value is used to truncate the basis, with the possibility of separate
control over radial and tangential variation. The fitting is done using Tikhonov or ridge regression, which adds
a term to the minimized loss function related to the magnitude of the coefficients of each basis polynomial.
This term is intended to make the function smooth by more strongly penalizing large coefficients, since they
are likely to lead to unphysical oscillations away from the fitting data. Particular choices for the weight of each
basis function’s coefficient in the ridge term can maximize particular quantifications of smoothness, such as the
average curvature, or reproduce the smoothness of the SOAP squared-exponential kernels.

Ridge regression can also be analyzed through a Bayesian interpretation, where the ridge term can be thought
of as a Bayesian prior favoring smooth fits. This formulation makes it possible to automatically optimize the
level of regularization on a global (Bayesian ridge regression, BRR) or per-coefficient (automatic relevance
determination, ARD) basis [30], and to produce an ensemble, or committee, of potentials for uncertainty
quantification by drawing from the probability distribution of polynomial coefficients [32].

Like GAP, the scaling of ACEpotentials.jl potentials with the number of elements is a power law (with
an exponent that depends on body order). Through the same analysis as for GAP, Darby et al. applied tensor

3Hyperparameters are parameters that control the behavior of a model but are set by the developer, either a priori or through
some heuristics, in contrast to model parameters that are adjusted by the regression method to minimize the error on the fitting
data.
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reduction to ACE and showed similarly promising results, but these have not yet been explored in a wide range
of applications, or incorporated into the current generally available implementation.

As its name suggests, the fitting framework of ACEpotentials.jl is implemented in Julia [33], and is
mainly used in that environment. To use the resulting potentials, an atomic-simulation environment (ASE)
calculator is available, and most, although not all, of the features can be exported into the format used by
the performant ACE (PACE) implementation [27]. This high speed evaluation code can be used within the
LAMMPS simulation software [34] for a wide range of time propagation and sampling methods with parallelism
based on spatial domain decomposition.

Nonlinear neural-network multilayer atomic cluster expansion (MACE)

The ACE formulation was used as the basis for a number of multi-layer neural-network architectures, including
NequIP [35] and multi-ACE [36]. Here I discuss a particular special case of the more general multi-ACE
approach, MACE, which is a very flexible non-linear extension of the ACE framework [37, 38]. Its input is the
ACE description of the atomic environment, starting from an atomic basis, forming a tensor product basis, and
finally a rotationally invariant symmetrized basis [39]. Rather than using it as a basis for a linear model as in
ACEpotentials.jl, this description is fed into an equivariant message-passing graph neural network (GNN)
that couples messages, constructed from symmetrized-basis tensors, along edges between nodes corresponding
to neighboring atoms. Each layer constructs output node features based on input messages from neighboring
atom nodes, and the final, readout, layer predicts output energies (or, in principle, other tensor quantities) based
on the final node features. As with all neural networks, there is the potential for extreme flexibility due to the
range of options for each of these stages.

In practice, some simple choices for the details of the architecture have led to remarkably accurate and
stable MLIPs across a vast range of materials. In general the tensor product basis is truncated to body order
4, two GNN layers are used, and the messages include angular momentum components of at most 2. These
choices limit the nonlinearity to the tensor product basis construction, and to the radial basis functions and
energy readout function, which are implemented as fully connected NNs (multilayer perceptrons, MLPs). This
mild degree of nonlinearity is meant to strike an optimal balance between functional form flexibility on the one
hand, and ease of fitting on the other.

The most remarkable result is that, in addition to making more accurate material-specific MLIPs than GAP
and ACEpotentials.jl [19, 39, 40], MACE has demonstrated the ability to create a universal foundation
model that is applicable across essentially the entire periodic table. MACE-MP0 [41], based on the Materials
Project (MP) database [42, 43], and MACE-OFF23 [44], based mainly on the SPICE database [45], have
demonstrated accurate results and stable dynamics and sampling across extremely wide ranges of configuration
space. MACE-MP0 achieves good accuracy across 89 elements in structures represented in the MP project
(about 20 meV/atom energy MAE and 45 meV/Å force MAE for the medium model), and at least qualitatively
reasonable description for 30 tested applications far beyond the configurations present in the fitting data.
While the precise properties it predicts are often approximate, it is nearly always stable enough to carry out
dynamics that can be used to efficiently generate new fitting configurations for fine-tuning. MACE-OFF23, fit
to organic molecules containing 10 elements, is even more accurate (about 1-2 meV/atom energy RMSE and
20-30 meV/Å force RMSE), although unlike MACE-MP0 its fitting and testing data consist almost entirely of
equilibrium configurations.

The MACE potential is currently implemented [38] using the pytorch library [46], with a python script for
fitting, an ASE Calculator interface for evaluation from python, and a torchscript-based interface for use
in LAMMPS [34].

Direct comparison
To give a more concrete idea of the relative accuracy and speed of these MLIPs, I fit GAP, ACE, and MACE
models to a database of CuxAl1−x DFT calculations. Note that the comparison below is meant to give an
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Table 1: Root-mean-squared error for fitting and testing data on energy (meV/atom), forces (meV/Å), and
stress (meV/Å3), and computational time in ms/atom/time step for MD of a 1024 atom configuration on a
single Intel Xeon Gold 6226R 2.9 GHz CPU core (GAP, ACE) or NVIDIA A100 GPU (MACE).

potential fit error test error time
energy force stress energy force stress

GAP 93 80 3.3 8.2 78 3.0 2.1
ACE 3, 10 140 140 6.1 18 140 5.3 0.057
ACE 5, 12 100 84 2.4 8.5 82 2.4 0.18
MACE small 95 86 1.6 5.8 76 1.7 0.042
MACE medium 96 82 1.4 5.7 80 1.7 0.12

overall sense of their relative performance, with the caveat that these results are based on somewhat arbitrary
heuristics for the various hyperparameters, and could vary significantly for other choices.

The fitting set consists of 4587 configurations from an iterative random-structure search and GAP fitting pro-
cess [47, 48] supplemented with automatically generated supercells, including various defects, at a range of tem-
peratures up to and including the liquid phase. An additional 682 configurations from the later iterations of this
process were reserved for testing. Reference energies, forces, and stresses were computed using DFT-PBE [49]
with the VASP software [50]. A GAP model was fit using the default heuristics of gap rss iter fit [48], with
two SOAP descriptors per element, and a total of 4000 sparse points. Two ACE models were fit using the GAP
cutoff of 6.5 Å: a faster potential with body order 3 and maximum polynomial degree 10 (338 basis functions),
and a slower potential with body order 5 and polynomial degree 12 (5370 basis functions). Finally, two MACE
models were fit by fine-tuning (with multihead stabilization) the small and medium foundation models, which
differ in hyperparameters affecting their speed, memory use, and accuracy, from Ref. [41]. These notably differ
from GAP and ACE in their effective interaction range of 12 Å.

In Table 1, I show the error on the fitting and testing databases and the computational cost of the potential
on a single CPU core (GAP, ACE) or GPU (MACE) in a 1024 atom molecular-dynamics (MD) simulation
using LAMMPS [34]. This system size is chosen to be large enough that the GPU-related latency is a small
contribution and the listed times will be roughly constant for larger systems. All three MLIPs produce accurate
models, with errors that, in our experience, correspond to useful accuracy (of order 5-10%) for physical properties
such as binding energies, elastic constants, defect formation energies, etc. The faster ACE model is considerably
less accurate than GAP, while the slower one matches GAP in accuracy. Both MACE models have very similar
accuracy, matching or exceeding that of the GAP and ACE models. This may be due to the nonlinearity and
additional parameters in the MACE functional form, as well as the longer cutoff.

The computational speed is somewhat harder to compare, because GAP and ACE scale nearly perfectly
linearly in the number of atoms and their current implementations are efficiently parallelized using domain
decomposition, while MACE has a significant latency due to CPU-GPU communication and has not yet been
efficiently parallelized. The table comparison is in the regime of a large number of atoms (∼ 1000) per CPU
core (GAP, ACE) or GPU (MACE). GAP is the slowest of the MLIPs, at about 2 ms/atom/time step. The two
ACE variants show some of the available tradeoff range, with the less accurate one ∼ 35× faster than GAP and
the more accurate one only ∼ 12×. The two MACE potentials have a comparable speed on a single GPU to
ACE on a single CPU core.

The constraints of the current MACE implementation to a single GPU mean that the largest system size
on a GPU with 80 GB of memory is about 21,000 for the small model and 8,000 atoms for the medium model.
With the small model, the largest system can be simulated for ∼ 0.11× 106 time-steps/day, but due to latency
even a 54 atom system can only be simulated for ∼ 8× 106 time-steps/day, about five times slower per atom.
ACE, on the other hand, is comparable in per-atom speed on a single CPU core to MACE on a GPU, and when
run in parallel loses only about 30% in speed with only 100 atoms/CPU core. Therefore, a single 128 core node
should be able to simulate 21,000 atoms with the faster, less accurate ACE for ∼ 7×106 time steps/day, about
60× faster than MACE. The development of efficient CPU implementations of MACE, as well as improvements
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to its domain decomposition parallel efficiency for both the GPU and CPU versions, are ongoing.

Outlook
Rapid advances in MLIPs are beginning to remake the field of atomistic simulations of material properties. The
success of SOAP-GAP showed that it was possible to develop sufficiently expressive functional forms to describe
a material’s PES across a wide range of geometries, but with sufficient smoothness that they could be fit to a
practical amount of DFT-calculated data. New advances in descriptors for GAP will make it possible to apply
this capability to larger and more chemically complex systems.

ACE models can match the accuracy of GAP models, but are one to two orders of magnitude faster, even
when compared to the relatively fast soap turbo formulation. This speedup can enable the simulation of larger
systems, for example approaching the scale of multiple crystalline grains separated by grain boundaries (of order
104 − 105 atoms), or enable longer time sampling (of order nanoseconds, 106 time steps).

MACE enables the creation of foundation models that describe nearly all chemical elements and can be
used as a basis for fine-tuned models for a specific material system or reference data calculation method.
This capability has already revolutionized approaches to simulating new, chemically complex systems, including
systems as diverse as as solid state acid proton conductors, polymer-based Li-ion sulfide electrolytes, and
structural metallic alloys.

Especially by combining the best ingredients of GAP, ACE, and MACE, as well as the many others I did not
have time or space to present, MLIPs are becoming capable of dramatically more accurate calculations of prop-
erties for systems with chemical and structural complexity that approaches experimentally and technologically
relevant materials.
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learning unifies the modeling of materials and molecules”, Science Advances, 3(12):e1701816, 2017, http:
//advances.sciencemag.org/lookup/doi/10.1126/sciadv.1701816.
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17 J. P. Darby, D. P. Kovács, I. Batatia, M. A. Caro, G. L. W. Hart, C. Ortner, and G. Csányi, “Tensor-Reduced
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